
Introduction to 
OpenResty XRay

Deep monitoring, analyses and diagnoses for your online applications

Try OpenResty XRay for free

https://openresty.com/en/xray/

info@openresty.com

https://openresty.com/en/xray/request-demo/
https://openresty.com/en/xray/
mailto:info@openresty.com?subject=About%20the%20OpenResty%20XRay%20product


Challenges in the World of Software

Rapid business iteration
Team members of 

various levels
Inadequate testing

Increasing complexity of 
business

High CPU usage

Excessive memory 
usage (including 
memory leaks)

Insufficient hard disk IO 
resources

Long latency response

Exceptions and errors 
that are difficult to 
reproduce offline 
(including process 

crashes)



Challenges in 
the Age of 
K8s/Docker 
Containers

Lots of containers, lots of applications, lots of 
distributions, lots of technology stacks

Minimized containers lack the most basic debugging 
tools

Minimized set of container permissions

Automatically discard and restart containers when 
something goes wrong. Software bugs are easily 
swept under the carpet

Virtualized containers, Microservices - further 
increase the software complexity



Disadvantages of 
Traditional Methods

Invasive - need to modify applications

Slow response

Need the storage and analysis of big data

Superficial indicators only

Observations without causes

Lack of in-depth full technology stack analysis and diagnosis

Complex data collection and processing process, high overhead and error-
prone



OpenResty XRay 

• OpenResty XRay is a dynamic tracing product

• Enables real-time analysis of various cloud and server applications

• Treat running processes and containers as read-only databases and extract the 
necessary information to resolve performance issues, exceptions, errors, and 
security vulnerabilities

• With a knowledge base, inference engine, and hundreds of advanced analyzers

• Can diagnose and narrow down the root cause of deep problems without changing 
or affecting the target application



OpenResty XRay Analyzes Non-container Application Processes Directly



OpenResty XRay Penetrates Containers and Analyzes 
Applications



100% Non-Invasive

• No need to modify your application

• No need to add new plug-ins, modules, or patches 
to your application

• No need to inject any code into your applications

• No need to restart your application processes

• No need to use special startup or compilation 
options in your application

• No need to rebuild your existing application 
containers or application packages



OpenResty XRay Fully Automatic Sampling, Unattended Usage Mode

• Time sampling

• Event-driven sampling (CPU changes, memory changes, IO 
changes, exceptions and errors)

• Reasoning chains driven



Extremely Low 
Performance 
Overhead

• Performance overhead is strictly 0 
when not sampling

• Performance overhead is often not 
noticeable when sampling



OpenResty XRay CPU Performance Analysis

• High CPU usage can reduce the system stability and quality of service, and even make services 
unavailable

• How CPU time is distributed over different code paths in different scenarios (flame graphs, 
automatic flame graph interpreter)

• Cover code paths of different software levels: business programming language level 
(Lua/Python/PHP/Perl/Go/etc.), system programming language level (C/C++/Rust), OS kernel 
level (network protocol stack/process scheduler/memory management/system calls)

• Examples of common CPU bottlenecks: duplicate computations (lack of cache), SSL handshake 
related, garbage collection (GC) overhead, dynamic memory allocation overhead, serialization 
and deserialization, unexpectedly frequent system calls, infinite loops, wrong regular 
expression matching, (third-party) software libraries with inefficient implementation, spinlock 
contention





OpenResty XRay CPU Blocking (off-CPU) Analysis



OpenResty XRay 
Analysis of Request 
Latency

• Breakdown the latency to different operation and processing phases of 
applications

• Precise packet capture, only capture network packets on problematic 
connections (including high latency, timeouts, connection errors, when
upper layer applications report errors, etc.)

• Latency statistics of asynchronous non-blocking IO (e.g. the distribution 
of Lua concurrent yield time over Lua code paths)



OpenResty XRay Memory Usage Analysis

• Memory usage of C memory 
allocators such as Glibc/Jemalloc 
(including Glibc memory 
fragmentation)

• How memory is distributed 
quantitatively over all GC objects 
(e.g. Lua objects, Python objects, 
PHP objects, etc.), by reference 
relationships between GC objects.

• Memory leak, memory 
fragmentation, or delayed release?



GC Object Reference Relationship Flame Graph
Quantitative visualization of how memory is distributed over all object reference paths







OpenResty XRay File IO Performance Analysis



Online intelligent network packet capture
Only catch packets on abnormal network connections



OpenResty XRay Automated Analysis Diagnostic Reports

Read blog posts about 
automated analysis and 

diagnostic reports

https://blog.openresty.com/en/xray-auto-reports/


Automatic Memory Problem Diagnostic Reports



Automatic Latency Analysis and Diagnosis 



off-CPU Automatic Diagnostic Report



Automatic Diagnostic Reports on Errors and Exceptions



Automatic Analysis of 
Security Issues

Automatic checking and reporting of 
connections without TLS encryption

Dynamically scanning  of TLS connections 
without certificate source verification

Check the usage of a non-secure version of the 
SSL protocol

Scan remote shell command execution events 
and code contexts



Core Dump Process Remains Analysis (Process Crashes)



Extract Deep Information from Core Dump Files



OpenResty XRay 
Mobile Apps

Watch your applications from 
any where, any time
• Android (Google Play)

• iOS (Apple Store)



OpenResty XRay is Not just for 
OpenResty Applications

• Nginx, LuaJIT, OpenResty, Python, PHP, Go, 
Erlang, Perl, Envoy, Ruby, Redis, Rust, Kong

• Preliminary Support:
PostgreSQL

• Coming soon:
NodeJS, Java



Supports Most Mainstream Linux 
Distributions and Container Deployment



OpenResty XRay is based On the Advanced 
Dynamic Tracing Technology



Advantages 
of Dynamic 
Tracing

• Non-invasive, no need to modify application 
modifications

• Hot-plugging, usually do not need the 
cooperation of applications (many open-source 
dynamic tracing tools still require the 
cooperation of applications)

• Overhead is normally low and aggregation can 
be done at the data source

• Online real-time debug capability in a 
postmortem manner

• Full technology stack analysis from all angles

• On-demand sampling

• Strictly 0 loss when not sampling



OpenResty XRay New generation of Dynamic 
Tracing Technology

• Y-language (Ylang) compiler (supports most of the syntax of GNU C and standard C)

• Ylua Language

• YSQL Language

• Stap+ has significantly improved SystemTap

• eBPF+ significantly improves eBPF (while LLVM+ also significantly improves open source 
LLVM)

• ODB is an ultra-lightweight version of GDB

• The Ylang compiler can also generate highly optimized Python extension codes of GDB

• Stringent performance loss control aimed at online production environments



“Write once, 
run 
everywhere”

From Y-language code to 
various runtime codes



More Abstract 
Languages 
Which Are 
Based on Y 
Language



Write and Debug Analysis Tools Written in 
Languages like Ylang/YLua/YSQL On the 
OpenResty Xray Console’s Web UI



OpenResty XRay Hundreds of Standard 
Analyzers



Debug symbols

• OpenResty XRay has a central package database 
indexing hundred TB of debug symbols for public 
packages. This database is still growing rapidly

• The target machine does not need to install or 
store debug symbols, as long as they have been 
indexed by the OpenResty XRay Central Package 
Database

• For applications in which debug symbols cannot 
be found or were not generated at compile time, 
OpenResty XRay will be able to automatically 
rebuild debug symbols (prototype of working 
machine learning algorithms already exist)



Trusted By Lots of Enterprise Customers



Learn More

Visit OpenResty XRay official website

Visit OpenResty Xray official blog

Try OpenResty XRay for free

OpenResty XRay Frequently Asked Questions

https://openresty.com/en/
https://blog.openresty.com/en/
https://openresty.com/en/xray/request-demo/
https://openresty.com/en/xray/faq/

	Slide 1: Introduction to  OpenResty XRay
	Slide 2: Challenges in the World of Software
	Slide 3:  Challenges in the Age of K8s/Docker Containers
	Slide 4: Disadvantages of Traditional Methods
	Slide 5: OpenResty XRay 
	Slide 6: OpenResty XRay Analyzes Non-container Application Processes Directly
	Slide 7: OpenResty XRay Penetrates Containers and Analyzes Applications
	Slide 8: 100% Non-Invasive
	Slide 9: OpenResty XRay Fully Automatic Sampling, Unattended Usage Mode
	Slide 10: Extremely Low Performance Overhead
	Slide 11: OpenResty XRay CPU Performance Analysis
	Slide 12
	Slide 13: OpenResty XRay CPU Blocking (off-CPU) Analysis
	Slide 14: OpenResty XRay Analysis of Request Latency
	Slide 15: OpenResty XRay Memory Usage Analysis
	Slide 16: GC Object Reference Relationship Flame Graph
	Slide 17
	Slide 18
	Slide 19: OpenResty XRay File IO Performance Analysis
	Slide 20: Online intelligent network packet capture
	Slide 21: OpenResty XRay Automated Analysis Diagnostic Reports
	Slide 22: Automatic Memory Problem Diagnostic Reports
	Slide 23: Automatic Latency Analysis and Diagnosis 
	Slide 24: off-CPU Automatic Diagnostic Report
	Slide 25: Automatic Diagnostic Reports on Errors and Exceptions
	Slide 26: Automatic Analysis of Security Issues
	Slide 27: Core Dump Process Remains Analysis (Process Crashes)
	Slide 28: Extract Deep Information from Core Dump Files
	Slide 29: OpenResty XRay Mobile Apps
	Slide 30: OpenResty XRay is Not just for OpenResty Applications　
	Slide 31: Supports Most Mainstream Linux Distributions and Container Deployment
	Slide 32: OpenResty XRay is based On the Advanced Dynamic Tracing Technology
	Slide 33: Advantages of Dynamic Tracing
	Slide 34: OpenResty XRay New generation of Dynamic Tracing Technology
	Slide 35: “Write once, run everywhere”
	Slide 36:  More Abstract Languages Which Are Based on Y Language
	Slide 37: Write and Debug Analysis Tools Written in Languages like Ylang/YLua/YSQL On the OpenResty Xray Console’s Web UI
	Slide 38: OpenResty XRay Hundreds of Standard Analyzers
	Slide 39: Debug symbols
	Slide 40: Trusted By Lots of Enterprise Customers
	Slide 41: Learn More

